资源类型

期刊论文 1084

会议视频 19

年份

2023 79

2022 110

2021 87

2020 53

2019 58

2018 48

2017 40

2016 45

2015 55

2014 56

2013 61

2012 57

2011 49

2010 59

2009 48

2008 41

2007 42

2006 16

2005 12

2004 11

展开 ︾

关键词

水资源 16

细水雾 14

可持续发展 8

固体氧化物燃料电池 7

燃料电池 7

泥水盾构 6

反渗透 5

绿色化工 5

水环境 4

环境 4

砂卵石地层 4

超滤 4

三峡工程 3

优化 3

农业节水 3

半旱地农业 3

Preissmann格式 2

SOFC 2

中国西北地区 2

展开 ︾

检索范围:

排序: 展示方式:

Performance and emission characteristics of a diesel engine operating on different water in diesel emulsion

Seyed Saeed HOSEINI, Mohammad Amin SOBATI

《能源前沿(英文)》 2019年 第13卷 第4期   页码 636-657 doi: 10.1007/s11708-019-0646-7

摘要: The nitrogen oxide (NO ) release of diesel engines can be reduced using water in diesel emulsion fuel without any engine modification. In the present paper, different formulations of water in diesel emulsion fuels were prepared by ultrasonic irradiation. The water droplet size in the emulsion, polydisperisty index, and the stability of prepared fuel was examined, experimentally. Afterwards, the performance characteristics and exhaust emission of a single cylinder air-cooled diesel engine were investigated using different water in diesel emulsion fuels. The effect of water content (in the range of 5%–10% by volume), surfactant content (in the range of 0.5%–2% by volume), and hydrophilic-lipophilic balance (HLB) (in the range of 5–8) was examined using Box-Behnken design (BBD) as a subset of response surface methodology (RSM). Considering multi-objective optimization, the best formulation for the emulsion fuel was found to be 5% water, 2% surfactant, and HLB of 6.8. A comparison was made between the best emulsion fuel and the neat diesel fuel for engine performance and emission characteristics. A considerable decrease in the nitrogen oxide emission (–18.24%) was observed for the best emulsion fuel compared to neat diesel fuel.

关键词: water in diesel emulsion fuel     hydrophilic-lipophilic balance (HLB)     response surface methodology (RSM)     emulsion stability     engine performance     exhaust emission    

Combustion and emissions of RP-3 jet fuel and diesel fuel in a single-cylinder diesel engine

《能源前沿(英文)》 2023年 第17卷 第5期   页码 664-677 doi: 10.1007/s11708-021-0787-3

摘要: The combustion characteristics and emission behaviors of RP-3 jet fuel were studied and compared to commercial diesel fuel in a single-cylinder compression ignition (CI) engine. Engine operational parameters, including engine load (0.6, 0.7, and 0.8 MPa indicating the mean effective pressure (IMEP)), the exhaust gas recirculation (EGR) rate (0%, 10%, 20%, and 30%), and the fuel injection timing (−20, −15, −10, and −5 ° crank angle (CA) after top dead center (ATDC)) were adjusted to evaluate the engine performances of RP-3 jet fuel under changed operation conditions. In comparison to diesel fuel, RP-3 jet fuel shows a retarded heat release and lagged combustion phase, which is more obvious under heavy EGR rate conditions. In addition, the higher premixed combustion fraction of RP-3 jet fuel leads to a higher first-stage heat release peak than diesel fuel under all testing conditions. As a result, RP-3 jet fuel features a longer ignition delay (ID) time, a shorter combustion duration (CD), and an earlier CA50 than diesel fuel. The experimental results manifest that RP-3 jet fuel has a slightly lower indicated thermal efficiency (ITE) compared to diesel fuel, but the ITE difference becomes less noticeable under large EGR rate conditions. Compared with diesel fuel, the nitrogen oxides (NOx) emissions of RP-3 jet fuel are higher while its soot emissions are lower. The NOx emissions of RP-3 can be effectively reduced with the increased EGR rate and delayed injection timing.

关键词: RP-3 jet fuel     diesel     engine     combustion     emissions    

Effects of Fischer-Tropsch diesel fuel on combustion and emissions of direct injection diesel engine

HUANG Yongcheng, WANG Shangxue, ZHOU Longbao

《能源前沿(英文)》 2008年 第2卷 第3期   页码 261-267 doi: 10.1007/s11708-008-0062-x

摘要: Effects of Fischer-Tropsch (F-T) diesel fuel on the combustion and emission characteristics of a single-cylinder direct injection diesel engine under different fuel delivery advance angles were investigated. The experimental results show that F-T diesel fuel exhibits shorter ignition delay, lower peak values of premixed burning rate, lower combustion pressure and pressure rise rate, and higher peak value of diffusion burning rate than conventional diesel fuel when the engine remains unmodified. In addition, the unmodified engine with F-T diesel fuel has lower brake specific fuel consumption and higher effective thermal efficiency, and presents lower HC, CO, NO and smoke emissions than conventional diesel fuel. When fuel delivery advance angle is retarded by 3 crank angle degrees, the combustion duration is obviously shortened; the peak values of premixed burning rate, the combustion pressure and pressure rise rate are further reduced; and the peak value of diffusion burning rate is further increased for F-T diesel fuel operation. Moreover, the retardation of fuel delivery advance angle results in a further significant reduction in NO emissions with no penalty on specific fuel consumption and with much less penalty on HC, CO and smoke emissions.

关键词: combustion pressure     further     HC     operation     single-cylinder    

Effect of distributions of fuel concentration and temperature on ignition processes in a diesel PCCI

Yang YU, Wanhua SU,

《能源前沿(英文)》 2010年 第4卷 第2期   页码 269-279 doi: 10.1007/s11708-009-0046-5

摘要: The distributions of fuel concentration and temperature have significant effect on the ignition processes of diesel premixed charge compression ignition (PCCI) combustion. It was found in this study that the ignition process of PCCI combustion organized by multi-pulse injection was strongly influenced by conditions of fuel stratification. The start of low temperature reactions occurred in the leaner area of the combustion chamber in the test engine because the temperature here first reached the point of low temperature reactions. Ignition always occurred in the position where the mixture featured with equivalence ratios close to the mean equivalence ratio of the overall mixture, while the neighboring area of the initial ignition area accumulate heat with a finite speed until finally autoigniting. Moreover, the appearance of highest combustion temperature occurred in the same area at the combustion chamber. For more homogeneous mixture, a higher amount of mixture reached ignition simultaneously, resulting in a larger initial ignition area and a higher temperature at the ignition area. Furthermore, V-type distribution of equivalence ratio was found to be beneficial to retarding high temperature reaction.

关键词: PCCI     fuel stratification     multi-pulse injection     ignition    

Combustion analysis of a hydrogen-diesel fuel operated DI diesel engine with exhaust gas recirculation

M. LOGANATHAN, A. VELMURUGAN, TOM PAGE, E. JAMES GUNASEKARAN, P. TAMILARASAN

《能源前沿(英文)》 2017年 第11卷 第4期   页码 568-574 doi: 10.1007/s11708-017-0461-y

摘要: The rapid depletion of fossil fuel and growing demand necessitates researchers to find alternative fuels which are clean and sustainable. The need for finding renewable, low cost and environmentally friendly fuel resources can never be understated. An efficient method of generation and storage of hydrogen will enable automotive manufacturers to introduce hydrogen fuelled engine in the market. In this paper, a conventional DI diesel engine was modified to operate as gas engine. The intake manifold of the engine was supplied with hydrogen along with recirculated exhaust gas and air. The injection rates of hydrogen were maintained at three levels with 2 L/min, 4 L/min, 6 L/min and 8 L/min and 10 L/min with an injection pressure of 2 bar. Many of the combustion parameters like heat release rate (HRR), ignition delay, combustion duration, rate of pressure rise (ROPR), cumulative heat release rate (CHR), and cyclic pressure fluctuations were measured. The HRR peak pressure decreased with the increase in EGR rate, while combustion duration increased with the EGR rate. The cyclic pressure variation also increased with the increase in EGR rate.

关键词: hydrogen     exhaust gas recirculation (EGR)     diesel     combustion     heat release rate (HRR)     combustion duration    

Numerical simulation of biodiesel fuel combustion and emission characteristics in a direct injectiondiesel engine

Yi REN, Ehab ABU-RAMADAN, Xianguo LI,

《能源前沿(英文)》 2010年 第4卷 第2期   页码 252-261 doi: 10.1007/s11708-010-0036-7

摘要: The effect of the physical and chemical properties of biodiesel fuels on the combustion process and pollutants formation in Direct Injection (DI) engine are investigated numerically by using multi-dimensional Computational Fluid Dynamics (CFD) simulation. In the current study, methyl butanoate (MB) and -heptane are used as the surrogates for the biodiesel fuel and the conventional diesel fuel. Detailed kinetic chemical mechanisms for MB and -heptane are implemented to simulate the combustion process. It is shown that the differences in the chemical properties between the biodiesel fuel and the diesel fuel affect the whole combustion process more significantly than the differences in the physical properties. While the variations of both the chemical and the physical properties between the biodiesel and diesel fuel influence the soot formation at the equivalent level, the variations in the chemical properties play a crucial role in the NO emissions formation.

关键词: biodiesel     diesel engine     CFD simulation     combustion     pollutant formation    

Study of engine performance, emission and combustion characteristics fueled with diesel-like fuel produced

V. Edwin Geo, Ankit Sonthalia, Fethi Aloui, Femilda Josephin J. S.

《环境科学与工程前沿(英文)》 2018年 第12卷 第4期 doi: 10.1007/s11783-018-1063-6

摘要:

To derive liquid fuel from waste engine oil and plastics thorough pyrolysis process

To make equal blend of waste engine oil and plastics with diesel fuel

To find the suitability of fuel from waste in diesel engine through performance, emission and combustion characteristics

关键词: Waste engine oil     Waste plastic oil     Diesel fuel     Pyrolysis     Compression ignition engine    

Optimization of fuel supply map during starting process of electronic controlled diesel engine

LIANG Jinguang, YU Xiumin, GAO Yue, WANG Yunkai, YU Hongyang, Gong Baoli

《能源前沿(英文)》 2008年 第2卷 第4期   页码 410-415 doi: 10.1007/s11708-008-0080-8

摘要: Tests were conducted to study influence of fuel supply map during the starting process of an electronic controlled diesel engine using an electronic controlled diesel engine which was made up of a CA498Z diesel engine, a VP37 electronic controlled distributor injection pump management system and a VS100 calibration system. The calibration process of starting fuel supply map was educed under the principle of low HC emission and rapid starting velocity. The calibration methods of starting fuel supply map were obtained.

关键词: supply     management     CA498Z     process     controlled distributor    

A comparative study of particle size distribution from two oxygenated fuels and diesel fuel

Xiaoyan SHI, Kebin HE, Jie ZHANG, Yongliang MA, Yunshan GE, Jianwei TAN,

《环境科学与工程前沿(英文)》 2010年 第4卷 第1期   页码 30-34 doi: 10.1007/s11783-010-0011-x

摘要: Oxygenated fuels are known to reduce particulate matter (PM) emissions from diesel engines. In this study, 100% soy methyl ester (SME) biodiesel fuel (B100) and a blend of 10% acetal denoted by A-diesel with diesel fuel were tested as oxygenated fuels. Particle size and number distributions from a diesel engine fueled with oxygenated fuels and base diesel fuel were measured using an Electrical Low Pressure Impactor (ELPI). Measurements were made at ten steady-state operational modes of various loads at two engine speeds. It was found that the geometric mean diameters of particles from SME and A-diesel were lower than that from base diesel fuel. Compared to diesel fuel, SME emitted more ultra-fine particles at rated speed while emitting less ultra-fine particles at maximum speed. Ultra-fine particle number concentrations of A-diesel were much higher than those of base diesel fuel at most test modes.

关键词: oxygenated fuel     diesel particulate matter     particle size distribution     biofuel    

Impact of oxygen enriched combustion on the performance of a single cylinder diesel engine

K. RAJKUMAR, P. GOVINDARAJAN

《能源前沿(英文)》 2011年 第5卷 第4期   页码 398-403 doi: 10.1007/s11708-011-0157-7

摘要: In the present experiment, a computerized single cylinder diesel engine with a data acquisition system was used to study the effects of oxygen enriched combustion technology (OECT) on the performance characteristics. The use of different levels of oxygen-enriched air was compared with respect to percentage load. Increasing the oxygen content in the air leads to faster burn rates and increases the combustibility at the same stoichiometry (oxygen-to-fuel ratio). These effects have the potential to increase the thermal efficiency and specific power output of a diesel engine. The power increases considerably with oxygen enrichment. In addition, oxygen enrichment can also be considered as a way to reduce the sudden loss in power output when the engine operates in a high load condition. Assessed high combustion temperature from the oxygen enriched combustion leads to high combustion efficiency. OECT reduces the volume of flue gases and reduces the effects of greenhouse effects. Engine tests were conducted in the above said engine for different loads and the following performance characteristics like brake power (BP), specific fuel consumption (SFC), mean effective pressure, brake thermal efficiency, mechanical efficiency, and exhaust gas temperature were studied. The objective of this paper is to address, in a systematic way, the key technical issues associated with applying OECT to single cylinder diesel engines.

关键词: oxygen enriched combustion     exhaust gas temperature     brake power (BP)     specific fuel consumption (SFC)    

A hybrid fuel cell for water purification and simultaneously electricity generation

《环境科学与工程前沿(英文)》 2023年 第17卷 第1期 doi: 10.1007/s11783-023-1611-6

摘要:

● A novel hybrid fuel cell (F-HFC) was fabricated.

关键词: Flow-through field     Hybrid fuel cell     Polyoxometalates     Water purification     Electricity generation    

清洁燃料生产技术的新进展

李大东,蒋福康

《中国工程科学》 2003年 第5卷 第3期   页码 6-14

摘要:

概述了我国汽、柴油生产特点及质量现状和差距,指明了当今汽、柴油质量发展趋势和清洁燃料生产技术开发应用的原则,简要介绍了我国清洁汽、柴油生产技术的新进展。

关键词: 清洁燃料     质量     标准     汽油     柴油     生产技术     进展    

Ternary phase behavior of water microemulsified diesel-palm biodiesel

Nurul Atiqah Izzati MD ISHAK,Ismail Ab RAMAN,Mohd Ambar YARMO,Wan Mohd Faizal WAN MAHMOOD

《能源前沿(英文)》 2015年 第9卷 第2期   页码 162-169 doi: 10.1007/s11708-015-0355-9

摘要: This paper aims to develop a new microemulsions system comprising diesel and palm oil methyl ester (PME) that have the potential to be used as alternative fuels for diesel engines. The water-in-diesel-biodiesel microemulsions were prepared by applying PME mixed with diesel, non-ionic surfactants, co-surfactants and water to make the water-in-oil (W/O) microemulsion system. This microemulsified fuel was achieved through low-energy microemulsification by using the constant composition method. The diesel used was mixed with four different concentrations of PME, i.e., 10% (w/w) (B10), 20% (w/w) (B20), 30% (w/w) (B30) and neat diesel (B0). The amount of water was fixed at 20% (w/w). The phase behavior of the water/mixed non-ionic surfactant/diesel-PME system were studied by constructing pseudoternary phase diagrams with the goal of formulating optimized systems. The results showed that the microemulsions were formed and stabilized with a mixture of non-ionic surfactants at a weight ratio of 80:20 at 20% (w/w), and with mixed co-surfactants at a weight ratio of 25:75, 20:80 and 10:90 for B0, B10, B20 and B30 respectively. The particle size, kinematic viscosity at 40°C, refractive index, density, heating value, cloud point, pour point and flash point of the selected water-in-diesel microemulsion were 19.40 nm (polydispersity of 0.12), 2.86 mm /s, 1.435, 0.8913 g/mL, 31.87 MJ/kg, 7.15°C, 10.5°C and 46.5°C respectively. The corresponding values of the water-in-diesel-PME selected were 20.72 nm to 23.74 nm, 13.02 mm /s to 13.29 mm /s, 1.442, 0.8939 g/mL to 0.8990 g/mL, 31.45 MJ/kg to 27.34 MJ/kg, 7.2°C to 6.8°C, 8.5°C to 1.5°C and 47.5°C to 52.0°C. These preliminary findings were further studied as potential fuels for diesel engines.

关键词: palm methyl ester     palm oil biodiesel     microemulsion     water microemulsified fuels    

Shipboard bilge water treatment by electrocoagulation powered by microbial fuel cells

Xiaoxue Mei, Heming Wang, Dianxun Hou, Fernanda Leite Lobo, Defeng Xing, Zhiyong Jason Ren

《环境科学与工程前沿(英文)》 2019年 第13卷 第4期 doi: 10.1007/s11783-019-1134-3

摘要:

Reveals the synergy between microbial fuel cells and electrocoagulation.

Demonstrates MFC-ECC shipboard wastewater treatment is advantageous.

MFC-ECC integration enables energy neutral bilge water treatment.

关键词: Bilge water     Electrocoagulation     Microbial fuel cell     Shipboard wastewater    

新能源近期的发展态势

刘广志

《中国工程科学》 2003年 第5卷 第7期   页码 29-32

摘要:

介绍了国内外新能源的研发现状,指出了新能源的发展前景。

关键词: 新能源     生物柴油     氢能     燃料电池    

标题 作者 时间 类型 操作

Performance and emission characteristics of a diesel engine operating on different water in diesel emulsion

Seyed Saeed HOSEINI, Mohammad Amin SOBATI

期刊论文

Combustion and emissions of RP-3 jet fuel and diesel fuel in a single-cylinder diesel engine

期刊论文

Effects of Fischer-Tropsch diesel fuel on combustion and emissions of direct injection diesel engine

HUANG Yongcheng, WANG Shangxue, ZHOU Longbao

期刊论文

Effect of distributions of fuel concentration and temperature on ignition processes in a diesel PCCI

Yang YU, Wanhua SU,

期刊论文

Combustion analysis of a hydrogen-diesel fuel operated DI diesel engine with exhaust gas recirculation

M. LOGANATHAN, A. VELMURUGAN, TOM PAGE, E. JAMES GUNASEKARAN, P. TAMILARASAN

期刊论文

Numerical simulation of biodiesel fuel combustion and emission characteristics in a direct injectiondiesel engine

Yi REN, Ehab ABU-RAMADAN, Xianguo LI,

期刊论文

Study of engine performance, emission and combustion characteristics fueled with diesel-like fuel produced

V. Edwin Geo, Ankit Sonthalia, Fethi Aloui, Femilda Josephin J. S.

期刊论文

Optimization of fuel supply map during starting process of electronic controlled diesel engine

LIANG Jinguang, YU Xiumin, GAO Yue, WANG Yunkai, YU Hongyang, Gong Baoli

期刊论文

A comparative study of particle size distribution from two oxygenated fuels and diesel fuel

Xiaoyan SHI, Kebin HE, Jie ZHANG, Yongliang MA, Yunshan GE, Jianwei TAN,

期刊论文

Impact of oxygen enriched combustion on the performance of a single cylinder diesel engine

K. RAJKUMAR, P. GOVINDARAJAN

期刊论文

A hybrid fuel cell for water purification and simultaneously electricity generation

期刊论文

清洁燃料生产技术的新进展

李大东,蒋福康

期刊论文

Ternary phase behavior of water microemulsified diesel-palm biodiesel

Nurul Atiqah Izzati MD ISHAK,Ismail Ab RAMAN,Mohd Ambar YARMO,Wan Mohd Faizal WAN MAHMOOD

期刊论文

Shipboard bilge water treatment by electrocoagulation powered by microbial fuel cells

Xiaoxue Mei, Heming Wang, Dianxun Hou, Fernanda Leite Lobo, Defeng Xing, Zhiyong Jason Ren

期刊论文

新能源近期的发展态势

刘广志

期刊论文